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Botulinum neurotoxins are most potent of all toxins.Their N-terminal light chain domain (Lc)
translocates into peripheral cholinergic neurons to exert its endoproteolytic action leading
to muscle paralysis.Therapeutic development against these toxins is a major challenge due
to their in vitro and in vivo structural differences. Although three-dimensional structures and
reaction mechanisms are very similar, the seven serotypes designated A through G vastly
vary in their intracellular catalytic stability. To investigate if protein phosphorylation could
account for this difference, we employed Src-catalyzed tyrosine phosphorylation of the Lc
of six serotypes namely LcA, LcB, LcC1, LcD, LcE, and LcG. Very little phosphorylation
was observed with LcD and LcE but LcA, LcB, and LcG were maximally phosphorylated
by Src. Phosphorylation of LcA, LcB, and LcG did not affect their secondary and tertiary
structures and thermostability significantly. Phosphorylation of Y250 and Y251 made LcA
resistant to autocatalysis and drastically reduced its kcat/K m for catalysis. A tyrosine residue
present near the essential cysteine at the C-terminal tail of LcA, LcB, and LcG was readily
phosphorylated in vitro. Inclusion of a competitive inhibitor protected Y426 of LcA from
phosphorylation, shedding light on the role of the C-terminus in the enzyme’s substrate or
product binding.
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protein phosphorylation

INTRODUCTION
Botulinum neurotoxins (BoNTs)1 are among the most lethal of all
toxins and are also potential biowarfare agents (Cochrane, 1947;
Gill, 1982; Montecucco and Schiavo, 1995; Arnon et al., 2001).
Enormous efforts are devoted toward therapeutic development
against these targets (see examples in the references (Schmidt and
Stafford, 2005; Hines et al., 2008; Zuniga et al., 2008; Agarwal et al.,
2009; Burnett et al., 2009; Capkova et al., 2009; Ludivico et al., 2009;
Pang et al., 2009; Silhar et al., 2010; Hale et al., 2011). A thorough
understanding of their structure under cellular environment is
therefore essential.

Abbreviations: BoNT, botulinum neurotoxin; BoNT/A-G, BoNT serotypes A,
B, C, D, E, F, G; BSA, bovine serum albumin; CD: circular dichroism; CFP,
cyan fluorescent protein; DSC: differential scanning calorimetry; DTT, dithiothre-
itol; DPBS, Dulbecco’s phosphate-buffered saline; HEPES, (4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid); EGTA, ethylene glycol tetra acetic acid; FTIR:
Fourier transform infra red; HRP, horseradish peroxidase; LC, light chain LcA, light
chain of serotype A; LcA-phos, phosphorylated LcA; LcB-Phos, phosphorylated
LcB; LcB, light chain of serotype B; LcC1, light chain of serotype C1; LcD, light
chain of serotype D; LcE, light chain of serotype E; LcG, light chain of serotype
G; LcG-Phos, phosphorylated LcG; SBP: streptavidin binding protein; SNAP-25,
synaptosome-associated protein of 25 kDa; TFA, trifluoroacetic acid; Tm: melting
temperature; TMB, 3,3′,5,5′-tetramethylbenzidine; UPLC, ultra performance liquid
chromatography; VAMP, vesicle-associated membrane protein.

These 150 kDa exotoxins are produced by strains of Clostridium
botulinum as seven distinct serotypes, designated BoNT/A-G. After
finding their way through oral, respiratory, or wound routes to the
animal body, BoNTs travel to peripheral cholinergic neuronal cells
and are internalized by endocytosis followed by translocational
delivery of its 50 kDa light chain (Lc) from endosome into the
cytosol (Simpson, 2004). The free Lc, a zinc-endopeptidase (Schi-
avo et al., 1992a), exerts its proteolytic activity at specific sites on
one of the three synaptosomal proteins, SNAP-25, VAMP, or syn-
taxin. For example, the Lc of BoNT/A (LcA) and BoNT/E (LcE)
cleave at specific but different sites on SNAP-25 (Schiavo et al.,
1993), while Lc of BoNT/B (LcB) and BoNT/D (LcD) cleaves at
distinct but different sites on VAMP (Schiavo et al., 1992b). The
process prevents fusion of synaptosomes with the cell membrane,
blocking acetylcholine release into the neuromuscular junction.
The resultant effect is muscle paralysis and eventual death if the
intoxication is severe and not treated.

The overall polypeptide fold and three-dimensional structures
of all BoNT serotypes are almost identical (Lacy et al., 1998;
Eswaramoorthy et al., 2002; Agarwal et al., 2004, 2005; Arndt
et al., 2005, 2006; Jin et al., 2007; Kumaran et al., 2008a), and
they appear to follow the same reaction mechanism using the
conserved active site residues (Agarwal et al., 2004; Swaminathan
et al., 2004; Kumaran et al., 2008a). In spite of their in vitro
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structural and mechanistic identity, duration of BoNT serotype-
dependent paralysis in animal cells varies widely. For example, in
humans BoNT/A-induced paralysis can persist for more than a
year (Souayah et al., 2006). BoNT protease activity and toxicity in
rat cerebellar and mouse spinal cord neurons lasts from 3 months
for BoNT/A to less than a day for BoNT/E (Keller et al., 1999;
Foran et al., 2003). Thus, the structure of the Lc domain inside
neurons can be expected to vary widely to account for these differ-
ences. One possible source of structural variations may be through
post-translocational modifications that include phosphorylation,
palmitoylation, and ubiquitination, among others (Walsh, 2006a).

Post-translational modification of proteins in eukaryotic cells
can generate 10 to 100-fold more variants than the 30,000 pro-
tein products of the human genome, imparting the same pro-
tein with various regulatory, secretory, catalytic, and structural
functions (Walsh, 2006a). For example, SNAP-25 (Nagy et al.,
2004), VAMP (Nielander et al., 1995), and syntaxin (Foster et al.,
1998) among hundreds of synaptosomal proteins in neuronal
cells undergo phosphorylation at specific sites (Munton et al.,
2007) in performing and regulating various functions. Because the
prokaryotic BoNT Lc exerts its catalytic action on synaptosomal
proteins and survives within the eukaryotic neurons for extended
times (Keller et al., 1999; Souayah et al., 2006), it might be sub-
jected to phosphorylation. Indeed, in an attractive demonstration,
Ferrer-Montiel et al. (1996) reported that BoNT/A Lc undergoes
tyrosine phosphorylation inside PC12 cells and in vitro (Encinar
et al., 1998; Blanes-Mira et al., 2001; Ibanez et al., 2004). The
non-receptor tyrosine kinase, Src and PYK2 that are abundant
in these cells was efficient and specific in this phosphorylation
reaction. Src-catalyzed phosphorylation of LcA displayed elevated
proteolytic activity and thermal stability. Because both Src and
PYK2 are highly abundant in brain and neuroendocrine cells,
it was postulated that tyrosine phosphorylation may modulate
Lc activity within neurons (Ferrer-Montiel et al., 1996). This ex
vivo demonstration of Lc phosphorylation has not been verified
independently.

In this paper, we report our in vitro investigation of tyrosine
phosphorylation of eight versions of Lc from the six serotypes
of BoNT/A, BoNT/B, BoNT/C1, BoNT/D, BoNT/E, and BoNT/G.
Our results showed while LcA, LcB, LcC1, and LcG were readily
phosphorylated, LcD and LcE were poorly phosphorylated. One
tyrosine residue near the interchain disulfide-forming cysteine at
the C-terminus was phosphorylated in LcA, LcB, and LcG. In addi-
tion, two C-terminally truncated LcA forms, LcA420, and LcA424,
were also phosphorylated. Phosphorylation of LcA was accompa-
nied by loss of catalytic activity, without changes in secondary and
tertiary structures and thermal denaturation but made it highly
resistant to autocatalytic degradation due to phosphorylation of
two tyrosine residues at the autocatalytic site. Phosphorylation of
LcB marginally increased thermal stability and catalytic activity.

EXPERIMENTAL PROCEDURES
MATERIALS
Recombinant BoNT protease light chains of serotype A (LcA)
and serotype B (LcB) were purified as described (Ahmed et al.,
2003; Jensen et al., 2003; Gilsdorf et al., 2006), and similar
purification of serotypes D (LcD), and G will be published

elsewhere; LcE was purchased from BBtech (MA). Truncated ver-
sions of LcA containing the first 420 (LcA420; Segelke et al.,
2004) and 424 residues (LcA424; Kumaran et al., 2008a), and of
LcC1 containing the first 430 residues (Rawat et al., 2008) were
purified as described. Although the full-length LcA used here
contains an extra valine after the initial methionine at the N-
terminus, residue numbering used in this manuscript are accord-
ing to GenBank ID LcA1: AAQ06331; LcB1:BAE48264; LcC1:
CAA44263; LcD1: AAB24244; LcE1: BAB86845; LcF1:ADA79551;
LcG: CAA52275. Before the phosphorylation reaction, each light
chain (0.5–1 mg/ml), with the exception of LcA, was brought
to room temperature and then incubated with 0.25 mM ZnCl2
on ice for 30 min, followed by gel-filtration on a PD-10 col-
umn in 10 mM Na-phosphate, pH 7.4. LcA was directly applied
to a PD-10 column without pre-treatment with ZnCl2. Src
(1255 units/mg, 0.1 mg/ml), monoclonal anti-Src (GD11 and
4G10) antibody kits, and Western blot reagents were from Mil-
lipore, Billerica, MA, USA (previously Upstate Biotechnology Inc.
Temecula, CA, USA). Sequence-derived substrates from SNAP-25
for LcA (SNKTRIDEANQ-RATKML), and from VAMP for LcB
(LSELDDRADALQAGASQ-FETSAAKLKRKYWWKNLK; Foran
et al., 1994), and another VAMP sequence-derived substrate
peptide for LcD (LQQTQAQVDEVVDIMRVNVDKVLERDQK-
LSELDD; Rowe et al., 2010), all having N-terminal acetylated
and C-terminal amidated, were custom-synthesized and puri-
fied to >95% by Quality Controlled Biochemicals (Hampton,
MS, USA).

PHOSPHORYLATION REACTION
Phosphorylation reaction was performed according to the
manufacturer’s protocol. Briefly, LcA (0.55 mg/ml), LcA424
(0.28 mg/ml), LcA420 (0.18 mg/ml), LcB (0.17 mg/ml, LcC
(0.49 mg/ml), LcD (0.29 mg/ml), LcE (0.02 mg/ml), or LcG
(0.27 mg/ml) was incubated on ice with 20 mM HEPES pH
7.4, 2 mM DTT (final concentrations) followed by addition of
1 mM EGTA, 20 mM MgCl2, 2 mM ATP, and three units of
Src (0.025 mg/ml) in a total reaction volume of 0.1 ml. Con-
centration of the reagents, and the ratio of Lc (mg) to Src
(units) were same as in the literature except that 2 mM used
here was higher than 0.5 mM (Ferrer-Montiel et al., 1998;
Blanes-Mira et al., 2001; Ibanez et al., 2004). The final reac-
tion mixtures were incubated at 30˚C (20˚C for LcA) for 24 h.
For mass spectrometric analysis, 6 μl of the reaction mixture
was removed at various times and 6 μl of 0.5% trifluoroacetic
acid was added to each aliquot. For SDS-PAGE and Western
blot analyses, 12 μl of 2× SDS-load buffer was added to 6 μl
aliquot of the stopped reaction mixture. Duplicate SDS-PAGE
gels were run simultaneously, one for protein visualization by
Coomassie stain, the other for Western blot using horserad-
ish peroxide-anti-phosphotyrosine antibody. For catalytic activity
measurements, the reaction mixture was diluted with ice-cold
50 mM HEPES pH 7.4 for immediate activity determination
by UPLC. Alternately, in large-scale preparations, phosphoryla-
tion reaction was stopped by removing the Src with sepharose
beads containing monoclonal anti-Src antibody. Unless otherwise
stated, Western blot bands were visualized using electrochemical
luminescent stain.
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Preparative phosphorylation utilized LcA (0.58 mg/ml), LcB
(0.9 mg/ml), or LcG (1.5 mg/ml) in volumes of 1.5–3.0 ml
containing all other components. Aliquots were tested for com-
pletion of phosphorylation at intervals from 15 min to 48 h for
Western blot and mass spectrometric analyses. If the phospho-
rylation reaction was incomplete, incubation was continued for
up to 5 days with additional Src and ATP. The reactions were
stopped by addition of monoclonal anti-Src-agarose followed by
storage at 4˚C for 24 h. Phosphorylated product in the soluble
fraction was passed through a PD-10 column and collected in
50 mM Na-phosphate buffer, pH 6.8. The dilute protein frac-
tions were combined, concentrated on Centricon-10 microcon-
centrators, washed, and collected in the same buffer for further
analyses.

The standard tyrosine phosphorylation reaction component of
the Src supplier included 20 mM MgCl2 and 20 mM Tris-HCl, pH
7.4. We replaced Tris with HEPES in the assays because it gave
optimum Lc catalytic activity while the manufacturer suggested
Tris-HCl is inhibitory to Lc enzyme activity (Ahmed and Smith,
2000). After 3–24 h incubation with tyrosine kinase Src, Coomassie
staining of the proteins after SDS-PAGE showed (Figure 1) all
BoNT serotypes remained stable in retaining their linear structures
in the Src reaction mixture (0.1 ml). In large-scale phosphorylation
reactions using LcB and LcG (∼3 mg, 2 ml), the proteins remained
soluble after 48 h of incubation at 30˚C. Large-scale (2 mg, 2 ml)
reactions with LcA using standard conditions resulted in precipita-
tion of most of the protein within 24 h. Close observation revealed
the appearance of fine LcA precipitate soon after start of the incu-
bation, similar to the one observed by gentle stirring at a lower
temperature and at various protein concentrations (Toth et al.,
2009). Most of the remaining soluble protein showed autocat-
alyzed fragmentation products, most likely due to presence of the
divalent Mg++ ion (Ahmed et al., 2004) and a prolonged incu-
bation temperature of 30˚C (Ahmed et al., 2001, 2003, 2004). We
therefore excluded ZnCl2 pre-treatment of LcA and varied the
temperature of Src reaction incubation. We found that incubation
at 20˚C for up to 120 h prevented LcA precipitation and autocat-
alytic fragmentation. Therefore,a preparative amount of LcA-phos
was prepared by incubating 3 ml (1.6 mg) LcA with 0.02 mg Src at
20˚C for 48 h. Because the enzymatic tyrosine phosphorylation
activity of Src varied from batch to batch, its concentration in the
reaction mixture was adjusted between experiments to yield sat-
urating phosphorylation as monitored by ESI-MS at various time
points (see later).

Molecular mass of Lc target proteins, ∼51 kDa, was close to that
of the Src of ∼60 kDa, and Src underwent self-phosphorylation.
These two factors may lead to an incorrect interpretation of
the Western blot results. We therefore continued electrophoresis
(120 V, 90 mAmp) for a minimum of 1.5 h to clearly separate the
two proteins (Figure 1A).

UV-VISIBLE ABSORPTION, CIRCULAR DICHROISM, AND
FLUORESCENCE MEASUREMENTS
To determine protein concentration and to assess purity, UV-
visible absorption spectra were recorded at 22˚C with a Hewlett-
Packard 8452 diode array spectrophotometer. Lc concentra-
tion was determined using A0.1% (1 cm path length) value

of 1.0 at 278 nm (Ahmed et al., 2001) or by BCA assay
(Pierce) with BSA as standard. Both methods gave the same
result.

Circular dichroism spectra were recorded at 20˚C with a Jasco
718 spectropolarimeter with quartz cuvettes of 2 mm path length.
An average of five scans was recorded to increase signal-to-noise
ratio at a scan speed of 20 nm/min with a response time of 8 s.
In all measurements a buffer blank was recorded separately and
subtracted from sample recordings.

Tryptophan fluorescence emission spectra were recorded at
20˚C in a PTI QuantaMaster Spectrofluorimeter, Model RTC 2000
equipped with a Peltier controlled thermostat and Felix software
package. Emission and excitation slit widths were set at 1 nm and
excitation wavelength at 295 nm. Each spectrum was an average of
five scans.

MASS SPECTROMETRY
Tryptic peptide data were acquired using a Finnigan LCQ quadru-
pole ion trap mass spectrometer (Thermo Electron Corporation,
San Jose, CA, USA) equipped with a New Objective nanoelectro-
spray source (Woburn, MA, USA) and an Agilent 1100 nanoHPLC
system (San Jose, CA, USA). Eight microliters of each tryptic
digest were injected onto a New Objective capillary LC col-
umn (10 cm × 75 μm) packed with Biobasic C18 (5 μm particle
size, 300 Å pore size). Peptides were eluted using a flow rate of
500 nL/min with flow splitting and the following linear gradient:
0–80% B in 60 min. Solvents A and B consisted of 0.1% formic acid
and 90% acetonitrile in 0.1% formic acid, respectively. The elec-
trospray voltage was 2.0 kV. The mass spectrometer was operated
using data-dependent MS/MS acquisition.

Phosphorylation sites were identified using Bioworks 3.2 soft-
ware (Thermo Electron Corporation, San Jose, CA, USA) and
the NCBInr database (13Oct06). Identified peptides were fur-
ther evaluated using a C. botulinum taxonomy filter and charge
state versus cross-correlation scores (XCorr). The XCorr criteria
for positive identification of tryptic peptides were values >1.9
for singly charged ions, values >2.2 for doubly charged ions, and
values >2.9 for triply charged peptides.

ENZYMATIC ACTIVITY ASSAYS
Activity assays were based on UPLC separation and measurement
of the cleaved products from a 17-residue SNAP-25 peptide for
LcA, 35-residue VAMP peptide for LcB, and 34-residue VAMP
peptide for LcD (Rowe et al., 2010). A master reaction mixture
lacking the Lc was prepared and aliquots were stored at –20˚C.
Stocks of 0.05–0.07 mg/ml Lc in 50 mM Na-HEPES, pH 7.4 con-
taining 0.05% Tween-20 were stored at -20˚C. Before assay, a Lc
stock was thawed and diluted further in 50 mM HEPES, pH 7.4
containing bovine serum albumin (BSA). At the time of assay, 5 μl
of the diluted LC was added to 25 μl of the thawed master mix to
initiate the enzymatic reaction. Components and final concentra-
tion in this 30 μl reaction mixture were 0.9 mM substrate peptide,
0.2 mg/ml BSA, 0.0026 mg/ml LC, 0.25 mM ZnCl2, 5 mM dithio-
threitol, and 50 mM Na-HEPES, pH 7.4. After 5–10 min at 37˚C,
the reactions were stopped by adding 90 μl of 1% trifluoroacetic
acid.
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FIGURE 1 | (A) Anti-phosphotyrosine Western blot of the time course of
tyrosine phosphorylation of a truncated LcA having residues 1–420 (LcA420),
another truncated version of LcA having residues 1–424 (LcA424), full-length
LcA alone (LcA) or in presence of 200 μM of an inhibitor (LcA + CRATKML),
LcB, LcG, a truncated version of LcC1 having residues 1–430, LcD, and LcE.

Each sample was incubated with three units of Src for 3, 7, and 24 h at 30˚C.
Unlabeled lanes on the far left left of each panel contain molecular mass
marker proteins. (B) Coomassie staining of LcA420, LcA424, LcA−, LcA+,
LcB, LcG, LcC, and LcD after 24 h incubation are shown in this order on the
right of molecular mass marker lane 2; LcA control is on the left, at lane 1.

The amounts of uncleaved substrate and the products were
measured after separation by a Waters Acquity UPLC system
equipped with Empower Pro software employing a reverse-phase
C18 column (2.1 mm × 50 mm, 1.7-μm particle size) with 0.1%
trifluoroacetic acid as solvent A and 70% acetonitrile/0.1% tri-
fluoroacetic acid as solvent B at a flow rate of 0.5 ml/min (Rowe
et al., 2010). LcA and LcC1 substrate and products were resolved by
UPLC with a 0–42% gradient of the solvent B over 2 min, followed
by column regeneration for 0.7 min. LcB substrate and products
were resolved by UPLC with a 0–100% gradient of the solvents
over 2 min, held at 100% B for 0.5 min, followed by column regen-
eration for 0.5 min (Rowe et al., 2010). LcD substrate and products
were resolved by UPLC with a 10–25% B over 1 min, 25–55% B
for 0.5 min, held at 55% B for 10 s, 100% B for 1.1 min, followed
by column regeneration for 0.7 min (Rowe et al., 2010).

RESULTS
TYROSINE PHOSPHORYLATION OF BoNT LCS
To understand structural and environmental factors affecting the
stability of BoNT Lcs (Ahmed et al., 2001, 2003, 2004; Toth
et al., 2009), we investigated in vitro tyrosine phosphorylation of
LcA (including LcA424 and LcA420), LcB, LcC, LcD, LcE, and
LcG by Src. Because purified LcF was not available to us, we
could not investigate this light chain. Phosphorylation was moni-
tored by Western blot probed with anti-phosphotyrosine antibody
(Figure 1A). LcA, LcB, LcC, and LcG were rapidly phosphorylated
within 3 h. LcB and LcG phosphorylation reached a maximum
within first 3 h of incubation, but intensity of the phosphorylated
LcA band continued to increase with incubation time, probably
because it had more than one phosphorylation site (see later).
Bands of reacted LcD and LcE, on the other hand, were very faint
to undetectable, suggesting these Lc were not good substrates for
phosphorylation by Src-kinase. Incubations of Lcs for up to 24 h

did not appear to degrade the proteins by autocatalysis (Ahmed
et al., 2003), as indicated by similar intensity of Coomassie-stained
bands before and after incubation (Figure 1B). Long incubation
times were chosen to ensure completion of the reactions of very
low concentrations (3∼30 μM) of the Lc substrates employed in
these experiments which could be much lower than their K m for
Src; a few cases where protein substrate K m for Src was determined
by others were in the millimolar range. Moreover, quantitative kcat

value (0.7/s) available in literature for a Src places it as one of the
poorest enzyme catalysts.

Two C-terminally truncated versions of LcA, both lacking a
particular tyrosine residue, Y426, were included in our experi-
ments. Like the full-length LcA the truncated versions, LcA420
and LcA424, were phosphorylated within 3 h. To find out if
an active site ligand would affect phosphorylation, we also
included a competitive peptide inhibitor, CRATKML (Schmidt
and Stafford, 2002) with the full-length LcA. The Western blot
results (Figure 1A) could not differentiate the rate of phospho-
rylation from control by the inhibitor, although MS analyses (see
later) clearly identified a reduction in phosphorylation.

ESI-MS analysis of time course samples indicated a progres-
sive decrease in the molecular ion peak of unmodified LcB with
concomitant increase in a molecular mass 80 Da higher represent-
ing a single tyrosine residue phosphorylation. Similarly ESI-MS
analysis of LcG and LcA reactions showed increasing molecular
ion peaks 160 and 240 Da greater (not shown) than unmodi-
fied Lc, characteristic for two and three tyrosine residue phos-
phorylations, respectively; this difference is most likely due to
1, 2, and multiple sites of phosphorylation in these three light
chains respectively (see Table 2, later). LcC1 showed an increase
of 80 Da for monophosphorylation, and a minor component
for diphosphorylation. A representative spectrum of LcB-phos
in Figure 2A, inset shows a gain of 2 amu in the three peaks
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FIGURE 2 | Progress of Src-catalyzed phosphorylation of LcB as

followed by mass spectrometry (A) anti-phosphotyrosine antibody

Western blot (B). (A) Relative abundance of the m/z species representing
phosphorylated LcB was plotted as a% of total LcB
(phosphorylated + unphosphorylated) as a function of time. Upper and
lower panels in the inset show representative LC-ESI-MS spectra for the
LcB phosphorylation reaction product at 0 and 4 h, respectively, showing
the +32, +31, and +30 ion peaks of LcB (1590, 1641, 1696), and +32, +31,
and +30 ion peaks of LcB-phos corresponds to 1592, 1643, 1698,
respectively. LC-ESI-MS was an effective tool to evaluate the degree of
phosphorylation. Additionally, deconvolution of the ion peaks gave
molecular weights for LcB as 50844.9 Da and for LcB-phos as 50922.0
indicating a single phosphorylated site. (B) Lanes 2-10 represent samples 0,
0.25, 0.5, 0.75, 1, 2, 3, 6, and 8 h after start of the phosphorylation reaction
catalyzed by 0.5 units of Src. Lane 1 has molecular mass markers. Absence
of the phosphorylated Src band (as seen in Figure 1A is due to much lower
amount of Src (0.5 units versus 3 units) used in this experiment. Because
there were no detectable bands, the gel picture in (B) was truncated after
31 kDa for better presentation.

(1590/1592, 1641/1643, and 1696/1698) from their unphospho-
rylated forms. The plot of the extent of phosphorylation versus
time showed more than 90% LcB was phosphorylated within
8 h. Phosphorylation reaction of LcB when followed by Western
blot also showed a similar time-dependent increase in inten-
sity (Figure 2B). Similar results were also observed for LcA (see
later.)

SECONDARY AND TERTIARY STRUCTURES AND STABILITY
To determine if phosphorylation affected secondary and tertiary
structures of the LC, we collected CD and tryptophan fluo-
rescence spectra, respectively. Because salts are known to affect
protein structure and stability, we used two different buffers:
10 mM Na-phosphate, pH 7.4 and PBS, pH 7.4 containing phys-
iological concentration (0.85%) of NaCl. We did not investigate
LcD, LcE, LcA424, LcA420, and LcC430 because the first two did
not show significant phosphorylation (Figure 1A), and the last
three were truncated proteins. Far-UV CD spectra of LcA-phos,
LcB-phos (Figure 3), and LcG-phos (not shown) remained essen-
tially identical to the unphosphorylated forms between 200 and
260 nm. Spectra were not affected by either 10 mM phosphate
buffer pH 7.4 or PBS (Figure 3). Spectra below 200 nm were
more affected by the buffer composition than by phosphoryla-
tion. Similarly, the tryptophan fluorescence spectrum of LcA was
not noticeably affected by phosphorylation (Figure 4). Trypto-
phan fluorescence spectrum of LcB-phos (not shown) was not
different than its unphosphorylated form although fluorescence
intensity was somewhat lower than that of LcB. These results sug-
gested that both secondary and tertiary structures of LcA and LcB
were not appreciably affected by phosphorylation. In contrast to
our results, from FTIR DSC, and catalytic activity analyses, Ferrer-
Montiel et al. (Encinar et al., 1998; Ibanez et al., 2004) reported
2–3˚C increased thermostability of LcA-phos due to an increase in
the helical content.

Post-translational modifications are known to affect protein
stability (Li et al., 2002; Walsh, 2006b). We followed CD at 220 nm
as a measure of thermostability when the temperature of the
cuvette was continuously increased. Thermal denaturation pro-
files of LcA or LcB in 10 mM phosphate buffer pH 7.4 and of

FIGURE 3 | Far-UV circular dichroism spectra of LcA-phos (A) and

LcB-phos (B) compared with their unphosphorylated counterparts.

Average of 5 scans at 20˚C of each protein (0.2 mg/ml) in a 2 mm cuvette
was recorded and reported here after subtraction of a corresponding buffer
blank. Identity of each spectrum shown in the insets represent LcA-phos
and LcB-phos in PB, closed circle; LcA-phos and LcB-phos in PBS, open
circle; LcA and LcB in PB, open triangle; LcA and LcB in PBS, closed
triangle.
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FIGURE 4 |Tryptophan fluorescence spectra of LcA-phos compared

with its unpohsphorylated form. Average of five scans (λex = 295 nm) at
20˚C of each protein (0.02 mg/ml) in a 2 mm cuvette was recorded and
reported here after subtraction of a corresponding buffer blank. Identity of
each spectrum shown in the inset represents LcA, closed circle and
LcA-phos, open circle.

FIGURE 5 |Thermal denaturation patterns of LcA-phos (A) and

LcB-phos (B) are compared with those of their unphosphorylated

counterparts in two different buffers. Circular dichroism signals at
222 nm of 0.18–0.2 mg/ml protein samples were monitored in at a
temperature gradient of 1˚C/min from 20 to 90˚C. Symbols: LcA-phos and
LcB-phos in PBS, X (crosx); LcA-phos and LcB-phos in PB, – (dashed line);
LcA and LcB in PB, O (open circle); LcA and LcB in PBS, Δ (open triangle).

LcA-Phos or LcB-Phos in PBS underwent sharp, typical unfold-
ing transitions (Figure 5) resulting in irreversible aggregate pre-
cipitate formation. Conversely, thermal denaturation profiles of
LcA-Phos or LcB-Phos in 10 mM phosphate buffer were signif-
icantly different and suggested resistance to unfolding. In addi-
tion, thermal denaturation in 100 mM phosphate buffer pH 7.4
(data not shown) exhibited the typical sharp transition form-
ing irreversible aggregate precipitate. Results indicate cooperative
irreversible aggregate formation in high buffer and salt concentra-
tions that rapidly precipitates from solution. Thus, behavior of the
phosphorylated proteins in low ionic strength buffer probably is
an exception. The midpoint of thermal denaturation, T m of LcA-
phos remained unchanged but those of LcB-phos and LcG-phos
were 1–2˚C higher than those of their unphosphorylated forms in
PBS (Table 1).

Table 1 |Thermostability of phosphorylated BoNT Lc.

Lc serotype T m (˚C) – the midpoint of

thermal transition

PBS 10 mM Na-phosphate

LcA 47.9 48.7

LcA-phos 47.2 –

LcB 50.3 51.4

LcB-phos 52.1 –

LcG 53.5 55.3

LcG-phos 54.7 55.8

The midpoint of thermal transition, Tm, values were computed from Figure 5 and

similar other traces not shown.

FIGURE 6 | Phosphorylation of LcA makes it highly resistant to

autocatalysis. Purified LcA before (upper panels) and after (lower panels)
the phosphorylation reaction was incubated without (right panels) or with
(left panels) 0.25 mM ZnCl2 at 4˚C for 0–5 days (d). Aliquots were analyzed
by SDS-PAGE and Coomassie staining. The LcA control at time zero
represents the sample that was sitting at 4˚C during the phosphorylation
reaction, and until the start of the autocatalysis experiment. Thus, it shows
substantial autocatalysis at time 0 h (h). Lanes labeled 1d and 5d represent
samples incubated for 1 and 5 days, respectively. Lane 1 in both panels
have molecular mass markers (Mr).

LcA AUTOCATALYSIS
LcA is very prone to autocatalysis especially in the presence of
divalent metal ions such as zinc, and increases with tempera-
ture leading to reduced catalytic activity (Ahmed et al., 2001,
2003, 2004). We observed autocatalysis when the phosphory-
lation reaction mixture (that contained MgCl2) was incubated
at 30–37˚C (see Experimental Procedures). LcA catalytic activ-
ity was also greatly reduced by phosphorylation (see below).
Because autocatalysis and catalysis of LcA occurs at the same
active site (Ahmed et al., 2003), we were interested to know if
the autocatalysis reaction would be affected by phosphorylation.
When incubated at room temperature for 5 days in the presence
of ZnCl2, most LcA fragmented but LcA-phos remained largely
intact (Figure 6). Thus phosphorylation made the LcA resistant
to autocatalysis.
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Table 2 | Src-catalyzed phosphorylation sites in LcA, LcB, LcC1, and LcG.

MSA* sequence

(Figure 7) #

Corresponding tryptic sequence of phosphorylated peptides from

LcA LcB LcC1 LcG

1 69-DVY*EYYDPTYLK-80

2 98-IY*STDLGR-105 101-EIGEELIY*R-109

3 178-NGY*GSTQYIR-187

4 197-FMLTY*SNATNDVGEGR-212

5 245-VNTNAY*Y*EMSGLEVSFEELR-264

6 344-MLTEIY*TEDNFVK-356

7 365-TY*LNFDK-371

8 382-VNYTIY*D GFNLR-3931 ND ND ND

9 418-NFTGLFEFY*K-427 427-EHLAVY*K-433 – 414-AVNKEAYEEISLEHLVIY*

R-432

*MSA, multipple sequence alignment. Each phosphorylation reaction mixture contained 50 μg Lc. Tryptic digests of the 24 h 30˚C phosphorylation reaction mixtures

were analyzed by mass spectrometry. The sequences shown are tryptic peptides containing phosphorylated tyrosine indicated by an asterisk (*). Although not con-

served in most cases, tyrosine peptides are grouped here based on their approximate locations in the primary sequence of different serotypes. Numbers before and

after each peptide sequence denote respective serotype residue number. 1Y388 in this peptide of LcA was phosphorylated only at 20˚C but never at 30˚C; because

incubation at 20˚C was not tried with other serotypes, we could not determine (ND) its phosphorylation at equivalent peptides. LcC1 used in this experiment having

residues 1-430 is missing a C-terminal Y431, and phosphorylation of this residue was not observed.

PHOSPHORYLATION SITES
We identified the sites of phosphorylation by mass spectrometric
analyses of tryptic peptides. Three tyrosine residues in LcA, Y250,
Y251, and Y426, were readily phosphorylated by Src (Tables 2 and
3). Tyrosines equivalent to Y250 and Y251 of LcA were not present
in any other serotype.

The next predominant phosphorylated Y426 near the C-
terminus (of the 449-residue LcA) is conserved in LcB, LcC1, and
LcG, and was readily phosphorylated in LcB and LcG. The LcC1
protein used in this experiment was a truncated form (residues
1–430) lacking the C-terminus; this tyrosine (Y430) located at the
end of the chain was not recognized by Src for phosphorylation.

The most predominant phosphorylation in the earliest
time point samples of LcA was diphosphorylation at Y250–
Y251, followed by monophosphorylation of Y251 and
monophosphorylation of Y426 (Table 3). Because monophospho-
rylation at Y251 but not at Y250 was observed, it is clear that reac-
tion at the former led to phosphorylation of the latter residue. Thus
the order of ease of phosphorylation was Y251 >Y250 >Y426.
During some phosphorylation reactions, LcA degraded into two
major fragments of approximately 23 kDa containing Y251 and
approximately 28 kDa containing Y250. Only Y251 in the smaller
fragment was phosphorylated. Y250–Y251 residues are found at
the end of a flexible loop bordering the S3′ substrate-binding
pocket of LcA (Kumaran et al., 2008a) which also forms the most
susceptible autocatalytic cleavable peptide bond (Ahmed et al.,
2003).

Because the conserved Y72 residue in Figure 7 was reported
to be the only Src-catalyzed phosphorylation site in BoNT Lcs
(Encinar et al., 1998; Blanes-Mira et al., 2001; Ibanez et al., 2004),
we repeated our experiment at least seven times with LcA under
a variety of reaction conditions to determine if this residue was

Table 3 | Extent of phosphorylation of full-length and two C-terminally

truncated LcA.

Tyrosine-phosphorylated

peptide sequence

LcA− LcA+ LcA424 LcA420

7-QFNYKDPVNGVDIAY*IK-23 0 0 0 4

98- IY*STDLGR-105 16 19 0 0

178-NGY*GSTQYIR-187 12 0 0 0

232-LY*GIAINPNR-241 0 26 22 15

245-

VNTNAY*Y*EMSGLEVSFEELR-

264

63 (17) 54 (6) 86 (7) 86 (3)

344-MLTEIY*TEDNFVK-356 9 13 0 0

365-TY*LNFDK-371 4 5 0 0

418-NFTGLFEFY*K-427 19 0 – –

Each phosphorylation reaction mixture contained 50 μg Lc. Tryptic digests of

the 24 h, 30˚C phosphorylation reaction mixtures were analyzed by LC-MS. The

sequences shown are those tryptic peptides that contained phosphorylated tyro-

sine indicated by an asterisk (*). LcA− and LcA+ represent Src reaction mixtures

that were incubated without and with (0.2 mM), respectively, of an active site

competitive inhibitor, CRATKML.The numbers in the right 4 columns represent%

of the tyrosine residue that was phosphorylated.These % values were computed

from area of Lc peaks of phosphorylated and native peptides. The numbers in

parentheses indicate mono phosphorylation state (%) of Y251.

phosphorylated. Instead, we found several other minor phospho-
rylation sites: Y99,Y180,Y349, and Y366 (Tables 2 and 3). Of these
residues, only Y366 is fully conserved (Figure 7) but it was phos-
phorylated only in LcA although there are five more (Y72, Y73,
Y77, Y321, Y366, and Y384, LcA numbering) conserved residues.
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FIGURE 7 | Multiple sequence alignment (MSA) of conserved and

non-conserved tyrosine containing peptides that were

tyrosine-phosphorylated by Src. Clustal multiple sequence alignment of
all of ∼450 residues of subtype 1 of BoNT Lc sequences were
constructed. Only those stretches of the sequence alignment are shown
here that contained a tyrosine residue being phosphorylated (bold) in any

serotype sequence (underlined) by Src in our experiments. Because of
high degeneracy, the sequence number 9 was also manually adjusted by
keeping the identical cysteine fixed and the phosphorylated tyrosine
aligned. GenBank ID: LcA1: AAQ06331; LcB1:BAE48264; LcC1:
CAA44263; LcD1: AAB24244; LcE1: BAB86845; LcF1:ADA79551; LcG:
CAA52275.

Thus, some conserved tyrosine residues although were phospho-
rylated in one (see later) serotypes, remained unaffected in other
serotypes. Our results provide a generalized picture of preferential
tyrosine phosphorylation across the BoNT serotypes but did not
show a pattern of consistency for in vitro phosphorylation across
different serotypes.

In another experiment where LcA was incubated at 20˚C for
24 h, 85% of Y250–Y251 was diphosphorylated, 15% of Y250,
21% of Y426, and 15% of Y387 was phosphorylated. Please
note that Y387 was not phosphorylated at 30˚C (Table 2). Addi-
tion of 0.05% Tween-20 to this reaction mixture almost com-
pletely abolished Y250–Y251 diphosphorylation but increased
Y251, and Y426 monophosphorylations to 70 and 38%, respec-
tively, while decreased Y387 phosphorylation to 7%. Thus, it
appears that temperature and detergents like Tween-20 can change

the LcA conformation in exposing new tyrosine residues and
their availability for phosphorylation by Src. We did not inves-
tigate the effects of temperature and detergent with other Lc
serotypes.

Interestingly, only one residue Y432 in LcB (corresponding to
Y426 in LcA) (Figure 7) was rapidly phosphorylated. Its equiv-
alent in LcG, Y431, was also readily phosphorylated. Another
non-conserved residue in LcG, Y71, also reacted but measuring
the corresponding mass peaks at all time points, showed that its
phosphorylated form was always much lower than the correspond-
ing Y431; after 24 h of incubation, 78% of Y430, 18% of Y71, and
25% of both were phosphorylated.

From the preceding results, tyrosine residue 3–6 positions
upstream from the essential and conserved disulfide-forming cys-
teine (C430 in LcA, C437 in LcB, and C436 in LcG) appears to be
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the only common residues in most of the BoNT serotypes that are
phosphorylated by Src. Although present in LcC1 native sequence
as Y431, it was absent in our LcC1 construct (residues 1–430). We
suspect this residue in full-length LcC1 would be as susceptible
to Src-catalyzed phosphorylation as in LcA, LcB, and LcG. This
tyrosine residue readily gets phosphorylated in LcB and LcG but
much slower in LcA.

ROLE OF C-TERMINUS OF LcA ON CATALYTIC ACTIVITY
The C-terminus of LcA undergoes autocatalytic processing
(Ahmed et al., 2001), and C-terminally truncated LcA has reduced
catalytic activity (Baldwin et al., 2004), suggesting that the C-
terminus approaches the active site in solution (Ahmed et al.,
2003). We therefore included two C-terminally truncated LcA
(both lacking Y426) and a competitive inhibitor with full-length
LcA in the Src reactions to determine the effect on phosphorylation
of other tyrosines (Table 3). Three important results were
obtained. First, the competitive inhibitor CRATKML (Schmidt
and Stafford, 2002) inhibited phosphorylation of Y426 at the C-
terminus and of Y180. Second, no measurable phosphorylations
of Y199, Y180, Y349, and Y366 were detected in the C-terminally
truncated Lcs (Table 3). Third, addition of the inhibitor with full-
length LcA and truncation of C-terminal residues beyond 420
exposed a new Y233 to phosphorylation. These results strongly
support the earlier suggestion that the C-terminus interacts with
the active site (Ahmed et al., 2003; Baldwin et al., 2004). In
addition, interactions of the C-terminus with other parts of
the protein must induce subtle changes in the protein’s con-
formation so that some tyrosine residues become exposed to
Src-catalyzed phosphorylation. Like Y366, Y233 is also a con-
served residue but this too was not phosphorylated in any other
serotype.

CATALYTIC ACTIVITY OF PHOSPHORYLATED LcA AND LcB
We assayed LcA and LcB catalytic activities as a function of phos-
phorylation. Aliquots of the phosphorylation reaction mixtures
were removed at set times for catalytic activity measurements and
for assessing the extent of phosphorylation. LcA catalytic activ-
ity was significantly decreased but LcB activity appeared to be
slightly stimulated by increased phosphorylation (Figure 8). The
LcB catalytic activity was stable for at least 4 weeks when stored
at 4˚C. Loss of LcA activity in the phosphorylation reaction mix-
ture (Figure 8) was verified in a purified preparation. At the end
of 48 h incubation at 20oC, un-reacted components of the reac-
tion mixture were first removed by anti-Src affinity precipitation
followed by repeatedly washing the LcA-phos on a Centricon-
10 microconcentrator. As seen before (Table 1), ESI-MS of the
tryptic digests of the purified sample identified Y250–Y251 as the
major phosphorylation site along with Y426 as another prominent
phosphorylation site.

Loss of activity of the LcA-phos was measured in the purified
sample as due to effects of phosphorylation on both K m and K cat

(Figure 9). Because phosphorylation had little impact on the LcB
catalytic activity (Figure 8B), we did not attempt to determine its
kinetic parameters. Although we prepared a large amount of LcG
(see above), we could not determine its catalytic activity, due to
the lack of a dependable assay method.

FIGURE 8 | Catalytic activities (closed circle) of LcA (A) and LcB

(B) are compared to the extent of phosphorylation (open circle)

as a function of phosphorylation incubation time. Aliquots of the
reaction mixtures were immediately diluted with substrate for
activity measurements, SDS-PAGE loading buffer for Western blot,
and with TFA for mass spectrometric analyses. Phosphorylation of
LcA was computed by densitometric scanning of the Western blot
images of Src reaction mixture (20˚C) aliquots at various time
intervals. Phosphorylation of LcB (30˚C) was computed from the ratio
of phosphorylated to non-phosphorylated ionic mass peaks. A low
temperature of 20˚C necessitated a longer incubation of LcA for
completion of the phosphorylation reaction.

FIGURE 9 | Lineweaver–Burke plots of reaction velocity versus

substrate concentration of reactions catalyzed by phosphorylated

(closed circles) versus unphosphorylated (closed triangles) LcA. The
30-μl assay reaction mixtures contained 5 mM dithiothreitol, 0.25 mM
ZnCl2, 0.2 mg/ml BSA, 0.028 mg/ml LcA, or 0.45 mg/ml LcA-phos and
variable (0.22, 0.33, 0.44, 0.67, and 1.13 mM) substrate
(SNKTRIDEANQ-RATKML) concentrations in 50 mM Na-HEPES pH 7.4. The
y-axis has two scales, one for LcA (inner scale, closed triangle), and the
other for LcA-phos (outer scale, closed circle). Each data point represents
an average of five assays.

DISCUSSION
A major challenge in the development of therapeutics as medical
intervention to botulinum BoNT intoxication is the persistence of
clinical symptoms for certain serotypes, particularly BoNT/A,/B,
and/C compared to the short-lived/E (Adler et al., 2001; Foran
et al., 2003). For example, half-life of BoNT/A action in rat cerebel-
lar neurons was 31 days, for BoNT/B was 10 days, and for BoNT/E
it was less than 1 day (Foran et al., 2003). Besides, after 15 days
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of start of intoxication, only 12% recovery was achieved from
BoNT/A-induced rat muscle paralysis compared to 94% recov-
ery of BoNT/E-induced paralysis (Adler et al., 2001). Because the
reaction mechanism and overall three-dimensional structure of all
BoNT catalytic domains are essentially identical (Lacy et al., 1998;
Eswaramoorthy et al., 2002; Agarwal et al., 2004, 2005; Swami-
nathan et al., 2004; Arndt et al., 2005, 2006; Jin et al., 2007;
Kumaran et al., 2008a), it was expected that the proteins might
undergo sequence-dependent covalent modification inside animal
host cells.

Of all the post-translational protein modifications, phospho-
rylation is probably the most common and also most extensively
studied (Walsh, 2006b). In addition to playing a central role in
protein-based signaling pathways, phosphorylation can impart a
proteins’ stabilization (Li et al., 2002) and stimulation of activity
(Patwardhan and Miller, 2007). We investigated if (a) phospho-
rylation can occur in the catalytic domains of various serotypes
of BoNTs, and (b) if differences in their phosphorylation pat-
terns might correlate with differences in their persistence of their
catalytic activity inside neurons.

In this study, we employed tyrosine kinase Src as the phospho-
rylating enzyme. Ferrer-Montiel et al. (1996) had reported that
only tyrosine kinase Src and no other serine-threonine kinases
were effective for BoNT/A phosphorylation. We showed that, with
the exception of LcD and LcE, tyrosine residues in other BoNT
Lcs were rapidly phosphorylated by Src (Figure 1A; Table 2).
Although we did not detect any phosphorylation of LcE, the results
remain inconclusive because the concentration of LcE was very
low due to its poor solubility. Our results differ with previous
reports concerning phosphorylation of the invariant Y71 of LcA
(our numbering Y72) and Y67 of LcE (Encinar et al., 1998; Blanes-
Mira et al., 2001; Ibanez et al., 2004). Because this residue was
reported as the only Src-catalyzed BoNT Lc phosphorylation site
based on mutational studies with LcA and LcE (Encinar et al.,
1998; Blanes-Mira et al., 2001; Ibanez et al., 2004), we repeated
our experiments several times with LcA and LcB but could not
detect Y71 (our numbering Y72) phosphorylation using trypsin
digestion of the phosphorylated Lc and mass spectrometry. In our
studies, both conserved and non-conserved (Figure 7) tyrosines
of LcA were phosphorylated (Tables 2 and 3) but no conserved
tyrosine was phosphorylated across the serotypes.

From the available data, phosphorylation of Y426 of LcA, Y432
of LcB, and of Y431 of LcG may have some functional signifi-
cance because they are located very near the fully conserved C430
(of LcA) that is essential for translocation (Simpson et al., 2004).
For example, wherever conserved, this residue was readily phos-
phorylated: Y432 of LcB and Y431 of LcG. Additional studies are
needed to ascertain the significance of phosphorylation of this
residue.

CONSEQUENCE OF TYROSINE PHOSPHORYLATION
The in vitro phosphorylation results described here do not sup-
port any detectable change in the protein’s secondary or tertiary
structure, nor any significant impact on their thermal stabil-
ity. Slightly elevated (1∼2˚C) midpoint of thermal transition
(Figure 5; Table 1) and activity of LcB (Figure 8B) and dramatic
reduction in LcA activity (Figures 7, 8) by our in vitro tyrosine
phosphorylation experiments (Figures 1, 2; Tables 2, 3) are in
contradiction to the well-established, increased catalytic stability
of BoNT/A over BoNT/B in neuronal cells (Keller et al., 1999;
Foran et al., 2003). From a structural point, the increased K m and
decreased kcat of LcA-phos (Figure 9) can be easily explained by
the fact that phosphorylation of Y250 and Y251 introduces two
bulky groups on the 250-loop that normally closes onto the active
site during catalysis (Kumaran et al., 2008b). This may limit the
access of the substrate to the active site. Because no ex vivo quan-
titative specific activity data are available, one cannot be sure if
LcA activity is low inside neurons that would support our in vitro
data (Figure 8), even though LcA activity persists there for a very
long time (Keller et al., 1999; Foran et al., 2003). Because LcB
does not have a site near the active site that can be phosphory-
lated, the LcB activity remained little affected by phosphorylation.
This consideration of steric hindrance by phosphate will equally
explain the stability of LcA-phos from autocatalytic fragmentation
(Figure 6) that occurs at the LcA active site (Ahmed et al., 2003,
2008).

CONCLUSION
In vitro reaction of LcA, LcB, LcC1, LcD, LcE, and LcG with
Tyrosine kinase Src resulted in phosphorylation of several tyro-
sine residues. One of these residues is fully conserved but not
all the conserved tyrosine residues were phosphorylated in each
serotype. Phosphorylation of Y250 and Y251 in LcA took place
most readily and made the protein highly resistant to autocatalysis
but drastically reduced its catalytic efficiency. Phosphorylation of
the tyrosine residue located near to the essential, conserved cys-
teine residue (C430 of LcA) might have a functional significance
for LcA, LcB, LcC1, and LcG.
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